RS∧Conference[™]2023

San Francisco | April 24 – 27 | Moscone Center

SESSION ID: AIR-M05

Hunting Stealth Adversaries with Graphs & Al

#RSAC

Jess Garcia

Founder of One eSecurity | Senior SANS instructor

@j3ssgarcia

RS∧Conference[®]2023

Disclaimer

Presentations are intended for educational purposes only and do not replace independent professional judgment. Statements of fact and opinions expressed are those of the presenters individually and, unless expressly stated to the contrary, are not the opinion or position of RSA Conference[™] or any other co-sponsors. RSA Conference does not endorse or approve, and assumes no responsibility for, the content, accuracy or completeness of the information presented.

Attendees should note that sessions may be audio- or video-recorded and may be published in various media, including print, audio and video formats without further notice. The presentation template and any media capture are subject to copyright protection.

© 2023 RSA Conference LLC or its affiliates. The RSA Conference logo and other trademarks are proprietary. All rights reserved.

#RSAC

Would you be able to **Detect a Stealth Adversary** moving through the network?

This is a tough challenge due to the inherent noise of non-malicious activity

#RSAC

In past RSAC editions ...

TOP 100 MALICIOUS EVENTS

We used ML to find anomalous/malicious logons

MIL

www.ds4n6.io/rsac22

4

RSAConference²023

Hunt Evil: Lateral Movement

https://www.sans.org/posters/hunt-evil/

Hunt Evil: Lateral Movement

EVENT LOGS

SOURCE

EVENT LOGS

security.evtx

- 4648 Logon specifying alternate credentials - if NLA enabled on destination
 - Current logged-on User Name
 - Alternate User Name
 - Destination Host Name/IP
 - Process Name

Microsoft-Windows-TerminalServices-RDPClient%40perational.evtx •1024

- Destination Host Name
- 1102
 - Destination IP Address

DESTINATION

Security Event Log -

- security.evtx
- 4624 Logon Type 10
- Source IP/Logon User Name
- 4778/4779
 - IP Address of Source/Source System Name
 - Logon User Name

Microsoft-Windows-RemoteDesktopServices-RdpCoreTS%40perational.evtx

- 131 Connection Attempts = Source IP
- •98 Successful Connections

Microsoft-Windows-Terminal Services-RemoteConnection Manager%40perational.evtx

#RSAC

Stronger Together

- 1149
 - Source IP/Logon User Name
 Blank user name may indicate
 - use of Sticky Keys
- Microsoft-Windows-Terminal Services-LocalSession Manager%40perational.evtx
 - 21, 22, 25
 - Source IP/Logon User Name
 - 41
 - Logon User Name

GIAC CERTIFICATIONS

Source: SANS DFIR Poster – Hunt Evil (v4.10_02-23) https://www.sans.org/posters/hunt-evil/

Hunt Evil: Lateral Movement

Stronger Together

SOURCE

EVENT LOGS

security.evtx

- 4648 Logon specifying alternate credentials
 - Current logged-on User Name
 - Alternate User Name
 - Destination Host Name/IP
 - Process Name

DESTINATION

security.evtx

- 4624 Logon Type 3
 - Source IP/Logon User Name
- 4672
 - Logon User Name
 - Logon by an a user with administrative rights

Microsoft-Windows-WMI-Activity%40perational.evtx

• 5857

EVENT LOGS

- Indicates time of wmiprvse execution and path to provider DLL – attackers sometimes install malicious WMI provider DLLs
- 5860, 5861
 - Registration of Temporary (5860) and Permanent (5861) Event Consumers. Typically used for persistence, but can be used for remote execution.

Source: SANS DFIR Poster – Hunt Evil (v4.10_02-23) https://www.sans.org/posters/hunt-evil/ Sabonis

Digital Forensic and Incident Response **Pivoting Tool**

https://github.com/jupyterj0nes/sabonis

RSAConference²023

The New Challenge

- How to detect Anomalies at Scale?
- How to detect Lateral Movement in a network with hundreds or thousands of nodes?

Threat Actor: Lateral Movement

RS∧Conference[™]2023

Stronger Together

THE POWER OF GRAPHS

All you need are graphs

What is a graph?

What are graphs for?

Lateral Movement on Graphs

#RSAC

Graph Algorithms

Stronger Together

15

Graph Tools

https://neo4j.com/product/neo4j-graph-database/

Neo4j: Data Loading

Convert .evtx to .csv

Import data & create a graph data map Make queries & processing

1 LOAD CSV WITH HEADERS FROM "file:///evtx.csv" AS evtx

- 2 MERGE (src:Host {Name: evtx.source})
- 3 MERGE (dst:Host {Name: evtx.destination})
- 4 CREATE (src)-[l:link {date: date(evtx.time)}]→(dst)
- 5 MATCH ({Name: "11.22.33.44"})-[:link]-(connected) RETURN connected

https://www.oreilly.com/library/view/hands-on-graphanalytics/9781839212611/

6

#RSAC

Neo4j: Lateral Movement Analysis

#RSAC

UserLine

For large amounts of data, visual analysis may **NOT** be effective.

Would we be able to detect Lateral **Movement** in complex networks?

Initial Problem

Initial Problem

(one)

Would AI / ML help in this intense and timeconsuming task?

RS∧Conference[™]2023

Stronger Together

MACHINE LEARNING FOR GRAPHS

Most of the existing ML algorithms are specialized in simple data types

#RSAC

Graph Data

https://www.khanacademy.org/computing/computerscience/algorithms/graph-representation/a/representing-graphs

Node Embedding

Map nodes in a graph to numerical features

https://towardsdatascience.com/graph-embeddings-how-nodes-get-mapped-to-vectors-2e12549457ed

#RSAC

Graph Neural Networks

GNN are a type of Neural Network capable of working with **graph data structures**

(One) SANS GIAC CERTIFICATIONS

https://medium.com/@rtsrumi07/understanding-graph-neural-network-withhands-on-example-part-1-6e35d7fe2777

RSAConference²⁰²³ 27

#RSAC

Graph Neural Networks

GNN are a type of Neural Network capable of working with **graph data structures**

https://medium.com/@rtsrumi07/understanding-graph-neural-network-withhands-on-example-part-1-6e35d7fe2777

RSAConference²023 28

#RSAC

Graph ML for Anomaly Detection

Stronger Together

#RSAC

Seq2seq ML Models

RSAConference[®]2023

#RSAC

Tools for Graph Neural Networks

Take your data to CHRYSALIS and use the power of AI in your investigations.

http://www.ds4n6.io/tools/chrysalis

#RSAC

DS4N6 Project

Our Mission: Bring Data Science & Artificial Intelligence to the fingerprints of the average Forensicator and promote advances in the field.

#RSAC

Stronger Together

Presented in ...

Data Science & ML for DFIR Analysts

http://www.ds4n6.io

CHRYSALIS

Python framework that provides high-level DS/ML functions to support incident response tasks

#RSAC

Stronger Together

With only 7 functions take your forensic analysis to the next level

whatis()	Identifies the forensic data type of an object (DataFrame –df– or DataFrame Collection –dfs–).
xread()	Reads tool output data (e.g. Plaso output) and stores it in a df/dfs.
xmenu()	Selects a df from dfs, or a column from a df, displaying the selected data allowing manual analysis.
xanalysis()	Displays a mane with the advanced analysis functions available for the given data type (i.e. forensic artifact).
xdisplay()	Used to select the display settings for the df that will be displayed (max. rows, max. columns, etc.).
simple()	Simplifies forensic output (df) showing only the most interesting columns for analysis.
xgrep()	UNIX-like grep for the df world. Allows the user to search for a regular expression in a df column or full df.

RSAConference²023 34

DAISY

More information in:

ds4n6.io/daisy

Stronger Together

Ready to use DS Virtual Machine designed to carry out Data Science and Machine/Deep Learning Analysis on DFIR data

Computer ds4n6_lib-Essentials.pdi * DS4N6 ds4n6's Home D, POWERED BY (ONE) DS4N6 DAIS CHRYSALIS **Forensics tools** Forensic demo data 1 Network Serve Get Jupyter Token ML/DS tools (2) DS4N6 Notebooks http://github.com/keydet89 MAGNET (a) JupyterLab Jupyterlab™ eland TimeSketch SY-Cheat_Sheel .pdf pandas Ali Hadi Ready to use notebooks ds4n6_lib-Cheat Sheet.pdf time**sketch** The Sleuth Kit FUNCTIONS VARS INIT MPORTS & IN ds4n6 lib-Cor

Demo: Real Incident Data – Ransomware Attack

Global Company

The attack could spread

CONTI

TOP Threat Actor from Russia using Cobalt Strike

Worldwide Scope

5k Servers + 350 DCs + 12k Laptops

#RSAC

Demo Data

Graph analysis is a powerful tool to detect patterns of anomalous activity

Machine Learning applied in Graphs automates the analysis and detection of anomalies

There are not many open source tools using ML in DFIR

DS4N6 is an open source project to bring the power of DS and ML to the community: CHRYSALIS, DAISY, etc.

The presented analysis shows how CHRYSALIS has been effective tool in real world incidents with FORTUNE 500 customers

All the details about this talk:

ds4n6.io/rsac23

THANKS!!

DS4N6

ds4n6.io

🖉 @ds4n6 io

DS4N6

Jess Garcia @j3ssgarcia

ONE/DS4N6 Research Team: Mario Perez Francisco Cortes - Beatriz Padilla

